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Abstract

We present our research on continuous speech recognition of the
surface electromyographic signals that are generated by the hu-
man articulatory muscles. Previous research on electromyographic
speech recognition was limited to isolated word recognition be-
cause it was very difficult to train phoneme-based acoustic mod-
els for the electromyographic speech recognizer. In this paper,
we demonstrate how to train the phoneme-based acoustic mod-
els with carefully designed electromyographic feature extraction
methods. By decomposing the signal into different feature space,
we successfully keep the useful information while reducing the
noise. Additionally, we also model the anticipatory effect of the
electromyographic signals compared to the speech signal. With a
108-word decoding vocabulary, the experimental results show that
the word error rate improves from 86.8% to 32.0% by using our
novel feature extraction methods.
Index Terms: speech recognition, electromyography, articulatory
muscles, feature extraction.

1. Introduction
As the research of automatic speech recognition (ASR) advances,
computers are required to provide people a more convenient way
to communicate. However, robustness and privacy have always
been issues in speech based applications. To overcome this, ef-
forts have been made to utilize whispered or non-audible silent
speech for ASR with special recording devices. For example,
“non-audible murmur” recognition using a stethoscopic micro-
phone has been presented by Nakajima et al. [1], and we reported
whispered speech recognition using a throat microphone [2]. An-
other approach is to make use of electromyographic (EMG) sen-
sors to monitor the articulatory muscles in order to recognize non-
audible silent speech. Chan et al. showed that such an approach
can be used for small vocabulary isolated word recognition [3].
Other related work also showed different aspects of success on
non-audible silent speech recognition [4, 5, 6]. However, these
pioneering studies are limited in small vocabulary due to the clas-
sification unit that is restrained to a whole utterance, instead of
phonemes, which is a standard practice of LVCSR. In our pre-
vious work, we demonstrated a first phoneme-based system and
analyzed it by studying the relationship of surface electromyogra-
phy and articulatory features (AFs) on audible speech [7]. Addi-
tionally, we are exploring the effects of using different sub-word
units for non-audible EMG speech recognition [8]. In this paper,
we advance the research to a continuous EMG speech recognition
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system on normal audible speech, which makes use of phoneme-
based acoustic models and feature extraction methods designed for
continuous EMG speech.

In the next section, we describe our experimental setup, then in
Section 3 the EMG feature extraction methods, followed by Sec-
tion 4 for experiments and analyses. We present our conclusions
in Section 5.

2. Experimental Setup
2.1. Data Acquisition

As shown in [6], EMG signals vary a lot across speakers, and
even across recording sessions of the very same speaker. As a
result, the performances across speakers and sessions may be un-
stable. To avoid this problem and to keep this research in a more
controlled configuration, in this paper we report results of data
collected from one male speaker in one recording session, which
means the EMG electrode positions were stable and consistent dur-
ing this whole session. In a quiet room, the speaker read English
sentences in normal audible speech, which was recorded with a
parallel setup of an EMG recorder and a USB soundcard with a
standard close-talking microphone attached to it, simultaneously.
When the speaker pressed the push-to-record button, the recording
software started to record both EMG and speech channels and gen-
erated a marker signal fed into both the EMG recorder and the USB
soundcard. The marker signal was then used for synchronizing the
EMG and the speech signals. The speaker read 10 turns of a set of
38 phonetically-balanced sentences and 12 sentences from news
articles. The 380 phonetically-balanced utterances were used for
training and the 120 news article utterances were used for testing.
The total duration of the training and test set are 45.9 and 10.6 min-
utes, respectively. We also recorded ten special silence utterances,
each of which is about five seconds long on average. The format of
the speech recordings is 16 kHz sampling rate, two bytes per sam-
ple, and linear PCM, while it is 600 Hz sampling rate, two bytes
per sample, and linear PCM for the EMG signals. The speech was
recorded with a Sennheiser HMD 410 close-talking headset.

The EMG signals were recorded with six pairs of Ag/Ag-Cl
surface electrodes attached to the skin1, as shown in Fig. 1. Ad-
ditionally, a common ground reference for the EMG signals is
connected via a self-adhesive button electrode placed on the left
wrist. The six electrode pairs are positioned in order to pick up the
signals of corresponding articulatory muscles: thelevator angulis
oris (EMG2,3), thezygomaticus major(EMG2,3), theplatysma
(EMG4), theorbicularis oris(EMG5), theanterior bellyof thedi-

1Strictly speaking, this method should be calledsurfaceEMG. How-
ever, we just use the term EMG for simplicity.



Figure 1: EMG electrode positioning

gastric (EMG1), and thetongue(EMG1,6) [3, 6]. Two of these
six channels (EMG2,6) are positioned with a classical bipolar con-
figuration, where a 2cm center-to-center inter-electrode spacing is
applied. For the other four channels, one of the electrodes is placed
directly on the articulatory muscles while the other electrode is
used as a reference attaching to either the nose (EMG1) or to both
ears (EMG 3,4,5). Note that the electrode positioning method fol-
lows [6], except that we do not use EMG5 in our final experiments
because its signal is unstable, and one redundant electrode chan-
nel to EMG6 (EMG7 in [6]) has been removed because it did not
provide additional gain on top of the other six [6].

In order to reduce the impedance at the electrode-skin junc-
tions, a small amount of electrode gel was applied to each elec-
trode. All the electrode pairs were connected to the EMG recorder
[9], in which each of the detection electrode pairs pick up the
EMG signal and the ground electrode provides a common refer-
ence. EMG responses were differentially amplified, filtered by a
300 Hz low-pass and a 1Hz high-pass filter and sampled at 600
Hz. In order to avoid loss of relevant information contained in the
signals we did not apply a 50 Hz notch filters which can be used
for the removal of line interference [6]. Also note that wearing the
close-talking headset does not interfere with the EMG electrode
attachment.

2.2. Audible Speech Recognizer

In order to forced-align the audible speech recordings, we used
a Broadcast News (BN) speech recognizer trained with the Janus
Recognition Toolkit (JRTk) [10]. In this system, Mel-frequency
cepstral coefficients (MFCC) with vocal tract length normaliza-
tion (VTLN) and cepstral mean normalization (CMN) is used to
get the frame-based feature. On top of that, linear discriminant
analysis (LDA) is applied to a 15-frame (-7 to +7 frames) seg-
ment to generate the final feature for recognition. The recognizer
is HMM-based, and makes use of quintphones with 6000 distribu-
tions sharing 2000 codebooks. The baseline performance of this
system is 10.2% WER on the official BN test set (Hub4e98 set 1),
F0 condition.

2.3. EMG Speech Recognizer

We used the following approach to bootstrap the continuous EMG
speech recognizer. First of all, the forced-aligned labels of the au-
dible speech data is generated with the aforementioned BN speech
recognizer. Since we have parallel recorded audible and EMG
speech data, the forced-aligned labels of the audible speech were

used to bootstrap the EMG speech recognizer. Since the train-
ing set is very small, we only trained context-independent acoustic
models. Context dependency is beyond the scope of this paper.
The trained acoustic model was used together with a trigram BN
language model for decoding. Because the problem of large vo-
cabulary continuous speech recognition is still very difficult for
the state-of-the-art EMG speech processing, in this study, we re-
stricted the decoding vocabulary to the words appearing in the test
set. This approach allows us to better demonstrate the performance
differences introduced by different feature extraction methods. To
cover all the test sentences, the decoding vocabulary contains 108
words in total. Note that the training vocabulary contains 415
words, 35 of which also exist in the decoding vocabulary. Also
note that the test sentences do not exist in the language model
training data.

3. EMG Feature Extraction

Since the EMG signal is very different from the speech signal, it
is necessary to explore feature extraction methods that are suit-
able for EMG speech recognition. Here we describe the signal
preprocessing steps and feature extraction methods we used in the
experiments.

As noted above, the EMG signals vary across different ses-
sions. Nonetheless, the DC offsets of the EMG signals vary, too.
In the attempt to make the DC offset zero, we estimate the DC off-
set from the special silence utterances on a per session basis, then
all the EMG signals are preprocessed to subtract this session-based
DC offset. Although we only discuss a single session of a single
speaker in this paper, we expect this DC offset preprocessing step
makes the EMG signals more stable.

In our previous work, we showed the anticipatory effects of
the EMG signals when compared to speech signals [7]. We also
demonstrated modeling this anticipatory effect improves the F-
score of articulatory feature classification. In this paper, we model
the anticipatory effect by adding frame-based delays to the EMG
signals when the EMG signals is forced-aligned to the audible
speech labels. Only channel-independent delay is introduced in
this paper, i.e. every EMG channel is delayed by the same amount
of time.

To describe the features designed for EMG signals, we denote
the EMG signal with normalized DC asx[n] and its short-time
Fourier spectrum asX. A nine-point double-averaged signal is
defined as

w[n] =
1

9

4X
n=−4

v[n], wherev[n] =
1

9

4X
n=−4

x[n]

A high frequency signal is defined as

p[n] = x[n]− w[n]

and the corresponding rectified signal is

r[n] =

(
p[n] if p[n] ≥ 0,

−p[n] if p[n] < 0.

Since all the features are frame-based, the time indices0 and
N represent the beginning and the length of the frame, respec-



Figure 2: Word Error Rate on Spectral Features
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tively. The time-domain mean feature is defined as

x̄ =
1

N

N−1X
n=0

x[n]

Similarly we define

w̄ =
1

N

N−1X
n=0

w[n] and r̄ =
1

N

N−1X
n=0

r[n]

Besides, we use the power features

Pw =

N−1X
n=0

|w[n]|2 and Pr =

N−1X
n=0

|r[n]|2

and the frame-based zero-crossing rate ofp[n]

z = zero-crossing count of(p[0], p[1], ..., p[N − 1])

To better model the context, we use the following contextual filters,
which can be applied on any feature to generate a new one. The
delta filter:

D(fj) = fj − fj−1

The trend filter:
T (fj , k) = fj+k − fj−k

The stacking filter:

S(fj , k) = [fj−k, fj−k+1, ..., fj+k−1, fj+k]

wherej is the frame index andk is the context width. Note that
we always apply LDA on the final feature.

4. Experiments and Analyses

In the following experiments, the final EMG features are gener-
ated by stacking single-channel EMG features of channels 1, 2, 3,
4, 6. The final LDA dimensions are reduced to 32 for all the ex-
periments, in which the frame size is 27 ms and frame shift is 10
ms.

Figure 3: Word Error Rate on Spectral+Temporal Features
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4.1. EMG ASR Systems Using Spectral Features

In our previous work, we had reported that the spectral coeffi-
cients are better than cepstral and LPC coefficients on EMG speech
recognition [6]. Therefore, we used the spectral features as base-
line in this paper. As their WER is shown in Fig. 2, the spectral
features are

S0 = X

SD = [X, D(X)]

SS = S(X, 1)

We can see that the contextual features improve WER. Addition-
ally, adding time delays for modeling the anticipatory effects also
helps. This is consistent to our previous work [7].

4.2. EMG ASR Systems Using Spectral+Temporal Features

We had reported that the time-domain mean feature provided ad-
ditional gain to spectral features [6]. Here we also added the time-
domain mean feature, as their WER is shown in Fig. 3:

S0M = Xm

SDM = [Xm, D(Xm)]

SSM = S(Xm, 1)

SSMR = S(Xmr, 1)

whereXm = [X, x̄] andXmr = [X, x̄, r̄, z].

4.3. EMG ASR Systems Using EMG Features

We have observed that even though the spectral features are among
the better ones, they are still very noisy for acoustic model training.
Therefore we designed the EMG features that are normalized and
smoothed in order to extract features from EMG signals in a more
robust fashion. The performance of the EMG features are shown



Figure 4: Word Error Rate on EMG Features
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in Fig. 4, where the EMG features are

E0 = [f0, D(f0), D(D(f0)), T (f0, 3)],

wheref0 = [w̄,Pw]

E1 = [f1, D(f1), T (f1, 3)],

wheref1 = [w̄,Pw,Pr, z]

E2 = [f2, D(f2), T (f2, 3)],

wheref2 = [w̄,Pw,Pr, z, r̄]

E3 = S(E2, 1)

E4 = S(f2, 5)

The essence of the design of feature extraction methods is to re-
duce noise while keeping the useful information for classification.
Since the EMG spectral feature is noisy, we decide to first extract
the time-domain mean feature, which is empirically known to be
useful in our previous work. By adding power and contextual in-
formation to the time-domain mean,E0 is generated and it already
outperforms all the spectral-only features. Since the mean and
power only represent the low-frequency components, we add the
high-frequency power and the high-frequency zero-crossing rate
to formE1, which gives us another 10% improvement. With one
more feature of the high-frequency mean,E2 is generated.E2
again improves the WER.E1 andE2 show that the specific high-
frequency information can be helpful.E3 andE4 use different
approaches to model the contextual information, and they show
that large context provides useful information for the LDA feature
optimization step. They also show that the features with large con-
text are more robust against the EMG anticipatory effect. We sum-
marize by showing the performance of all the presented feature
extraction methods in Fig. 5, in which all the feature extraction
methods apply a 50-ms delay.

5. Conclusions
We have presented a continuous EMG speech recognition system
which makes use of feature extraction methods designed for EMG
speech signals. With the restricted 108-word decoding vocabu-
lary, we explored various feature extraction methods that are better
representing the EMG signals for continuous speech recognition.

Figure 5: WER of Feature Extraction Methods with 50-ms Delay

0

10

20

30

40

50

60

70

80

90

100

S
0

S
D S
S

S
0
M

S
D
M

S
S
M

S
S
M
R E
0

E
1

E
2

E
3

E
4

Feature Extraction Methods

W
o

rd
 E

rr
o

r 
R

a
te

 (
%

)

Spectral Spectral+Temporal EMG

Modeling the EMG anticipatory effect also improves the perfor-
mance. The WER of the plain spectral-feature system is 86.8%
and the WER of the best EMG-feature system drops to 32.0%. In
the future, we expect to further model the channel-specific antici-
patory effect to improve EMG feature extraction.
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