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Abstract system on normal audible speech, which makes use of phoneme-
based acoustic models and feature extraction methods designed for
We present our research on continuous speech recognition of thezontinuous EMG speech.
surface electromyographic signals that are generated by the hu- | the next section, we describe our experimental setup, then in

man articulatory muscles. Previous research on electromyographiosection 3 the EMG feature extraction methods, followed by Sec-
speech recognition was limited to isolated word recognition be- tion 4 for experiments and analyses. We present our conclusions
cause it was very difficult to train phoneme-based acoustic mod-j, Section 5.

els for the electromyographic speech recognizer. In this paper,
we demonstrate how to train the phoneme-based acoustic mod- .
els with carefully designed electromyographic feature extraction 2. EXpe”mental Setup

methods. By decomposing the signal into different feature space,2 1. Data Acquisition

we successfully keep the useful information while reducing the ) )

noise. Additionally, we also model the anticipatory effect of the AS shown in [6], EMG signals vary a lot across speakers, and
electromyographic signals compared to the speech signal. With a€ven across recording sessions of the very same speaker. As a
108-word decoding vocabulary, the experimental results show thatresult, the performances across speakers and sessions may be un-
the word error rate improves from 86.8% to 32.0% by using our stable. To avoid this problem and to keep this research in a more

novel feature extraction methods. controlled configuration, in this paper we report results of data
Index Terms: speech recognition, electromyography, articulatory collected from one male speaker in one recording session, which
muscles, feature extraction. means the EMG electrode positions were stable and consistent dur-

ing this whole session. In a quiet room, the speaker read English

. sentences in normal audible speech, which was recorded with a
1. Introduction parallel setup of an EMG recorder and a USB soundcard with a
As the research of automatic speech recognition (ASR) advancesstandard close-talking microphone attached to it, simultaneously.
computers are required to provide people a more convenient way¥When the speaker pressed the push-to-record button, the recording
to communicate. However, robustness and privacy have alwayssoftware started to record both EMG and speech channels and gen-
been issues in speech based applications. To overcome this, eferated a marker signal fed into both the EMG recorder and the USB
forts have been made to utilize whispered or non-audible silent soundcard. The marker signal was then used for synchronizing the
speech for ASR with special recording devices. For example, EMG and the speech signals. The speaker read 10 turns of a set of
“non-audible murmur’ recognition using a stethoscopic micro- 38 phonetically-balanced sentences and 12 sentences from news
phone has been presented by Nakajima et al. [1], and we reporteciticles. The 380 phonetically-balanced utterances were used for
whispered speech recognition using a throat microphone [2]. An- training and the 120 news article utterances were used for testing.
other approach is to make use of electromyographic (EMG) sen- The total duration of the training and test set are 45.9 and 10.6 min-
sors to monitor the articulatory muscles in order to recognize non- utes, respectively. We also recorded ten special silence utterances,
audible silent speech. Chan et al. showed that such an approaci§ach of which is about five seconds long on average. The format of
can be used for small vocabulary isolated word recognition [3]. the speech recordings is 16 kHz sampling rate, two bytes per sam-
Other related work also showed different aspects of success orPle, and linear PCM, while it is 600 Hz sampling rate, two bytes
non-audible silent speech recognition [4, 5, 6]. However, these Per sample, and linear PCM for the EMG signals. The speech was
pioneering studies are limited in small vocabulary due to the clas- recorded with a Sennheiser HMD 410 close-talking headset.
sification unit that is restrained to a whole utterance, instead of =~ The EMG signals were recorded with six pairs of Ag/Ag-Cl
phonemes, which is a standard practice of LVCSR. In our pre- surface electrodes attached to the $kis shown in Fig. 1. Ad-
vious work, we demonstrated a first phoneme-based system andlitionally, a common ground reference for the EMG signals is
analyzed it by studying the relationship of surface electromyogra- connected via a self-adhesive button electrode placed on the left
phy and articulatory features (AFs) on audible speech [7]. Addi- wrist. The six electrode pairs are positioned in order to pick up the
tionally, we are exploring the effects of using different sub-word signals of corresponding articulatory muscles: lthator angulis
units for non-audible EMG speech recognition [8]. In this paper, oris (EMG2,3), thezygomaticus majo(EMG2,3), theplatysma
we advance the research to a continuous EMG speech recognitiofEMG4), theorbicularis oris(EMGS5), theanterior bellyof thedi-

The authors wish to thank Peter Osztotics for his valuable contribu- Istrictly speaking, this method should be calkdfaceEMG. How-
tions to this study. ever, we just use the term EMG for simplicity.



used to bootstrap the EMG speech recognizer. Since the train-
ing set is very small, we only trained context-independent acoustic
T models. Context dependency is beyond the scope of this paper.
The trained acoustic model was used together with a trigram BN
language model for decoding. Because the problem of large vo-
cabulary continuous speech recognition is still very difficult for
the state-of-the-art EMG speech processing, in this study, we re-
stricted the decoding vocabulary to the words appearing in the test
set. This approach allows us to better demonstrate the performance
differences introduced by different feature extraction methods. To
cover all the test sentences, the decoding vocabulary contains 108
words in total. Note that the training vocabulary contains 415
words, 35 of which also exist in the decoding vocabulary. Also
note that the test sentences do not exist in the language model
training data.

Figure 1: EMG electrode positioning
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ggstric (EMG1), and thetongue.(I.EMGLG.) [3, 6]. Two of these 3. EMG Eeature Extraction
six channels (EMG2,6) are positioned with a classical bipolar con-
figuration, where a 2cm center-to-center inter-electrode spacing is
applied. For the other four channels, one of the electrodes is placeqs
directly on the articulatory muscles while the other electrode is al
used as a reference attaching to either the nose (EMGL1) or to botkb
ears (EMG 3,4,5). Note that the electrode positioning method fol-
lows [6], except that we do not use EMGS5 in our final experiments
because its signal is unstable, and one redundant electrode chan- As noted above, the EMG signals vary across different ses-
nel to EMG6 (EMGY7 in [6]) has been removed because it did not sions. Nonetheless, the DC offsets of the EMG signals vary, too.
provide additional gain on top of the other six [6]. In the attempt to make the DC offset zero, we estimate the DC off-
In order to reduce the impedance at the electrode-skin junc- set from the special silence utterances on a per session basis, then
tions, a small amount of electrode gel was applied to each elec-all the EMG signals are preprocessed to subtract this session-based
trode. All the electrode pairs were connected to the EMG recorder DC offset. Although we only discuss a single session of a single
[9], in which each of the detection electrode pairs pick up the speaker in this paper, we expect this DC offset preprocessing step
EMG signal and the ground electrode provides a common refer- makes the EMG signals more stable.
ence. EMG responses were differentially amplified, filtered by a
300 Hz low-pass and a 1Hz high-pass filter and sampled at 600
Hz. In order to avoid loss of relevant information contained in the
signals we did not apply a 50 Hz notch filters which can be used
for the removal of line interference [6]. Also note that wearing the
close-talking headset does not interfere with the EMG electrode
attachment.

ince the EMG signal is very different from the speech signal, it

s necessary to explore feature extraction methods that are suit-
ble for EMG speech recognition. Here we describe the signal
reprocessing steps and feature extraction methods we used in the
experiments.

In our previous work, we showed the anticipatory effects of
the EMG signals when compared to speech signals [7]. We also
demonstrated modeling this anticipatory effect improves the F-
score of articulatory feature classification. In this paper, we model
the anticipatory effect by adding frame-based delays to the EMG
signals when the EMG signals is forced-aligned to the audible
speech labels. Only channel-independent delay is introduced in
this paper, i.e. every EMG channel is delayed by the same amount

2.2. Audible Speech Recognizer of time.

In order to forced-align the audible speech recordings, we used

a Broadcast News (BN) speech recognizer trained with the Janusne EMG signal with normalized DC asjn] and its short-time

Recognition Toolkit (JRTK) [10]. In this system, Mel-frequency q ier spectrum aX. A nine-point double-averaged signal is
cepstral coefficients (MFCC) with vocal tract length normaliza- defined as

tion (VTLN) and cepstral mean normalization (CMN) is used to

To describe the features designed for EMG signals, we denote

get the frame-based feature. On top of that, linear discriminant 1 & 1 &
analysis (LDA) is applied to a 15-frame (-7 to +7 frames) seg- wln] =g > vn], wherev[n] = 3 > an]
ment to generate the final feature for recognition. The recognizer n=—4 n=—4

is HMM-based, and makes use of quintphones with 6000 distribu- A
tions sharing 2000 codebooks. The baseline performance of this
system is 10.2% WER on the official BN test set (Hub4e98 set 1), p[n] = z[n] — win)
FO condition.

high frequency signal is defined as

and the corresponding rectified signal is

s Pl il =0,
—p[n] if p[n] < 0.

2.3. EMG Speech Recognizer

We used the following approach to bootstrap the continuous EMG
speech recognizer. First of all, the forced-aligned labels of the au-
dible speech data is generated with the aforementioned BN speech
recognizer. Since we have parallel recorded audible and EMG Since all the features are frame-based, the time indicasd
speech data, the forced-aligned labels of the audible speech weréV represent the beginning and the length of the frame, respec-



Figure 2: Word Error Rate on Spectral Features
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tively. The time-domain mean feature is defined as

1
N z[n]

n=0

X =
Similarly we define
1 N-1 1 N-1
W= Zow[n] and T = Zor[n]
Besides, we use the power features
N-1
Po =) |wn]?
n=0

and the frame-based zero-crossing ratg[of

N-1

and P, = Z|r[n}|2
n=0

z = zero-crossing count ap[0], p[1], ..., p[N — 1])

To better model the context, we use the following contextual filters,

Figure 3: Word Error Rate on Spectral+Temporal Features
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4.1. EMG ASR Systems Using Spectral Features

In our previous work, we had reported that the spectral coeffi-
cients are better than cepstral and LPC coefficients on EMG speech
recognition [6]. Therefore, we used the spectral features as base-
line in this paper. As their WER is shown in Fig. 2, the spectral
features are

S0 =X
SD = [X, D(X)]
SS = S(X,1)

We can see that the contextual features improve WER. Addition-
ally, adding time delays for modeling the anticipatory effects also
helps. This is consistent to our previous work [7].

4.2. EMG ASR Systems Using Spectral+Temporal Features

which can be applied on any feature to generate a new one. Thewe had reported that the time-domain mean feature provided ad-

delta filter:
D(f;) =15 — ;1
The trend filter:
Tt k) =10 — £k
The stacking filter:

S, k) = £k, £j—k+41, -

wherej is the frame index and is the context width. Note that
we always apply LDA on the final feature.

yEivk—1, fivn]

4. Experiments and Analyses

In the following experiments, the final EMG features are gener-

ated by stacking single-channel EMG features of channels 1, 2, 3

4, 6. The final LDA dimensions are reduced to 32 for all the ex-
periments, in which the frame size is 27 ms and frame shift is 10
ms.

ditional gain to spectral features [6]. Here we also added the time-
domain mean feature, as their WER is shown in Fig. 3:
SOM = X,
SDM = [Xm, D(Xm)]
SSM = S(Xm, 1)
SSMR = S(Xmr, 1)

whereXm = [X, X] andXmr = [X, X, T, 2].
4.3. EMG ASR Systems Using EMG Features

We have observed that even though the spectral features are among
the better ones, they are still very noisy for acoustic model training.
'Therefore we designed the EMG features that are normalized and
smoothed in order to extract features from EMG signals in a more
robust fashion. The performance of the EMG features are shown



Figure 4: Word Error Rate on EMG Features
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in Fig. 4, where the EMG features are

EO0 = [f0, D(f0), D(D(f0)), T'(f0, 3)],

wheref0 = [W, Pw]
E1 = [f1, D(f1), T(f1, 3)],

wherefl = [W, Pw, Py, 2]
E2 = [f2, D(£2),T(f2, 3)],

wheref2 = [w, Py, Py, 2, T
E3 = S(E2,1)
E4 = 5(f2,5)

Figure 5: WER of Feature Extraction Methods with 50-ms Delay
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Feature Extraction Methods

Modeling the EMG anticipatory effect also improves the perfor-
mance. The WER of the plain spectral-feature system is 86.8%
and the WER of the best EMG-feature system drops to 32.0%. In
the future, we expect to further model the channel-specific antici-
patory effect to improve EMG feature extraction.

(1]

(2]

The essence of the design of feature extraction methods is to re-

duce noise while keeping the useful information for classification.
Since the EMG spectral feature is noisy, we decide to first extract
the time-domain mean feature, which is empirically known to be
useful in our previous work. By adding power and contextual in-
formation to the time-domain meaBg is generated and it already
outperforms all the spectral-only features. Since the mean and
power only represent the low-frequency components, we add the
high-frequency power and the high-frequency zero-crossing rate
to form E1, which gives us another 10% improvement. With one

more feature of the high-frequency me&e is generated. E2

again improves the WERE1 andE2 show that the specific high-

frequency information can be helpfuE3 and E4 use different

approaches to model the contextual information, and they show
that large context provides useful information for the LDA feature
optimization step. They also show that the features with large con-
text are more robust against the EMG anticipatory effect. We sum-
marize by showing the performance of all the presented feature
extraction methods in Fig. 5, in which all the feature extraction

methods apply a 50-ms delay.
5. Conclusions

(3]

(4]

(5]

(7]

(8]

We have presented a continuous EMG speech recognition system
which makes use of feature extraction methods designed for EMG [9] “Varioport,” http://www.becker-meditec.de.

speech signals. With the restricted 108-word decoding vocabu
lary, we explored various feature extraction methods that are bette
representing the EMG signals for continuous speech recognition.
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